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On a class of magneto-convective boundary-layer flows 

By ZEEV ROTEM 
Department of Mechanical Engineering and Institute of Applied Mathematics, 

University of British Columbia, Vancouver 8, Canadat 

(Received 1 8  January 1971 and in. revised form 23 July 1971)  

A class of laminar rotating free-convective flows over a horizontal boundary in 
the presence of a strong magnetic field is investigated. The range of applicability 
of boundary-layer approximations is obtained, as well as a class of similarity 
solutions valid within a domain of multi-parameter space. 

1. Introduction 
Laminar, steady free-convective flows of an electrically conducting fluid in the 

presence of a magnetic field have been investigated extensively in recent years, 
e.g. Lykoudis (1962), Singh & Cowling (1963), Kuiken (1970). The multiplicity 
of physical parameters influencing such flows has made the derivation of 
boundary-layer solutions of more than cursory interest. It has, however, become 
increasingly clear that the domain of applicability of the boundary-layer 
simplifications needs careful scrutiny in each individual case. The flow considered 
here is that arising above a horizontal plate heated t o  a temperature above that 
of the surrounding fluid. The plate also rotates slowly a t  a steady angular velocity 
and in its own plane, while a strong magnetic field is aligned with the vector 
rotation. Schwiderski & Lugt (1967) have considered some such flows in the 
absence of buoyancy forces, while Rotem & Claassen (1969a, 1970) have con- 
sidered the case without a magnetic field, both with and without rotation of the 
boundary. Several features were established for buoyant flows of this type: 
(i) The order of velocities found is smaller than for other free-convective flows. 
(ii) Boundary-layer flows are found to exist only under some well-defined special 
conditions. (iii) These flows have only a weak degree of stability against external 
disturbances and this is reflected in the numerical integration of the equations of 
motion governing the flow. Rotem & Claassen (1969a, b)  also investigated some 
of these flows for the cases of vanishingly small and very large values of the 
Prandtl number (r and found that in both cases a double-layer structure results 
and necessitates the application of the method of matched asymptotic expan- 
sions. In  those flows the process of heat transfer is governed by a balance of the 
forces of buoyancy, viscous drag and inertia; for small values of CT the forces of 
viscous drag will play only a second-order role, while as (T -+ co those arising from 
inertia will be of only secondary importance. In  the present case forces arising 
from flow across a magnetic field will have to be included in the balance. Of 

t Present address : Facultad de Ci6ncias Fisicas y Matemtiticas, Universidad Cat6lica de 
Chile, Santiago. 
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particular interest will be the result that for fluids of large CT these latter forces are 
of negligible importance in the determination of the heat-transfer process. 

2. The governing equations 

and energy are as follows: 
The relations stating the conservation of mass, momentum, charge-flux density 

(1) v .  (pv) = - ap/at, 

DV -- VP P 
Dt P P 

- - - + g + - J x H + qE + vV2V + (&v)V(V. V), 

J = (4n)-lV x H = ??(E+pV x H), (3) 

V -- DT 
Dt -pcv (4) 

In the above, p, p, a, cv and K are the scalar parameters density, susceptibility, 
kinematic viscosity, electrical conductivity, specific heat at  constant volume 
and thermal conductivity respectively. V, g, J, H and E are the velocity, 
gravity, current density, magnetic and electrical fields respectively, while 
q , t ,  T and Qv are the charge density, time, temperature and viscous dissipation 
function. To the equations above must be added an equation of state, relating the 
density to the other variables and parameters in the system. The following 
assumptions, which are entirely justifiable for the physical system in hand, will 
lead to a great simplification in the governing equations. (i) The flow is exactly 
steady and the fluid is Newtonian and incompressible, except in as far as the 
dependence of density upon the temperature is concerned. (ii) All the scalar 
parameters except p, as noted, are constants throughout the field. (iii) The dis- 
tortion of the magnetic field is slight; displacement and magneto-convective 
currents may be disregarded. This assumption is liable to be rather restrictive 
in many cases of free-convective MHD flow but will be shown below to be less 
severe in the present case. (iv) Both the viscous dissipation OV and Joule dissi- 
pation arenegligible. (v) The flow field occupies a half-space with horizontal solid 
boundary; the bounding plane rotates around a normal axis with which the 
gravity and magnetic field vectors are aligned. 

With assumptions (i) and (ii) above (which lead to the Boussinesq approxima- 
tions) the equation of state becomes 

plpm = 1 - 4T - ~ m ) P m  + 0 l S 2 ) ,  (5) 

where 8,  the expansion coefficient at  constant pressure, has a small numerical 
value. The subscript co refers to values at  a large distance from the boundary. 

Clearly, under the assumptions made the flow is symmetrical around the axis 
of rotation, chosen as the x axis. Moreover, the configuration has no discernible 
characteristic length. This absence is EL precondition for the existence of boundary- 
layer type approximations (cf. Kuiken & Rotem 1971). The flow variables will 
now be rendered dimensionless through the choice of a reference length L such 
that the largest value of any dimensionless co-ordinate be of order unity. The 
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same procedure is followed for the magnetic field and for the temperature. The 
velocities arising in the case of buoyant flows over nearly horizontal surfaces are 
small in comparison with those over near vertical boundaries: their order is vL-l 
(Rotem & Claassen 1969b). This will therefore be a suitable reference velocity t o  
choose in the present case. With all these simplifications, and taking account of 
rotational symmetry, the governing equations become 

In the above, all variables are dimensionless. u, v and w are the components of V 
in the radial, circumferential and normal directions respectively, 8 is the dimen- 
sionless temperature normalized to a maximum value of unity and II is the 
pressure, 

G is the Grashof number geATLv-2, u the Prandtl number v/K and M the Hart- 
mann number [tF/(pv)]4LH. The algebraical sign in (9) is positive for the case of 
the vector gravity acting along --x. 

The equations (6)-( 10) must be supplemented by suitable boundary conditions. 
These are 

} (11) 
r > 0, u =  w = 0, v =  ReG-b ,  # = O(r,O), for x =  0, 

u=v=O, I I = O ,  8 = 0 ,  for z+m, r 3 0 .  

Here Re is the Reynolds number QZ2/v. With boundary conditions (11) the 
system of equations given is underdetermined but conditions on the vanishing 
of gradients of the velocity components far from the boundary furnish the missing 
boundary conditions. However, it will be shown that the conditions given in (1 1) 
are exactly sufficient for the solution of the boundary-layer equations. 

In the case of free-convective flow along a nearly verticd surface in the presence 
of a magnetic field the buoyancy term would arise in ( 7 )  and (8). Then the quali- 
tative ratio of magnetic forces to those of buoyancy is of order M2/G.  To render 
the terms of magnetic and buoyancy forces of comparable order in the equations 
of motion one would eliminate the parameter M2G-1 through a suitable co- 
ordinate stretching; the natural reference velocity would readily be found to be 
(M2/G) ( v /L ) ,  rather than v / L  as for the horizontal boundary. It is seen that even 
for the vertical boundary this velocity is small in comparison with that arising 
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because of buoyancy in the absence of a magnetic field. Indeed, their ratio is of 
order G*M-2, a result also deducible from the work of Kuiken (1970). For the 
nearly vertical surface one is then immediately led to a boundary-layer trans- 
formation designed to retain only the largest of the viscous terms in the equations 
of motion, as follows: 

65 = ( g G M - 2 ) ~ w ,  etc. 

In  the present case the terms due to buoyancy and those due to magnetic braking 
arise in different equations, coupling taking place indirectly through the pressure 
term. It is quite easily shown that the introduction of transformations along the 
lines outlined above leads to the loss of the buoyancy term and to the uncoupling 
of the equation of energy from the rest of the system. The correct boundary- 
layer transformation for the present case has been given by Rotem & Claassen 
(1 970) and is as follows 

2 = zGB, .ii = uG-%, 6 = G-%, 
ijj,=wGB, fl = nG-4. 1 (12) 

These transformations lead to the correct retention of all terms in the equation 
of continuity, to the amplification of the small co-ordinate z to order unity in the 
transform plane and to the retention of the most important highest order terms 
in the equations of motion. For large values of the Grashof number they there- 
fore lead to an ‘inner’ zeroth-order momentum boundary layer within which the 
forces of buoyancy, viscous friction and inertia are in balance. When the order of 
the Prandtl number is unity, it is within this very layer that the conductive and 
convective terms are in balance as well. Different considerations will apply when 
the Prandtl number takes on extreme values, as will be shown below. For other 
details of the theory the reader is referred to the various references. 

The transformations (12) will now be inserted in the equations of motion and 
the assumption of G > 1 will be introduced. For convenience all superscripts 
have been dropped. The result is a set of boundary-layer equations in which the 
order of the highest order terms omitted has been indicated. 

au u aw -+-+- = 0) 
ar Y az 

Here Ra is the Rayleigh number geATL3/(v~).  The following qualitative con- 
clusions may be drawn. (i) A measure of the ratio of magnetic to buoyant forces 
is the parameter M2G-f. (ii) A first-order correction to the temperature distribu- 
tion will be of order G-f, to the velocity distribution of order G G .  
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For the analysis outlined above to be applicable it is necessary for the Hart- 
mann number to be of the same order as or smaller than G++; a singularity would 
result if the magnetic effect were overwhelmingly large. 

We are now in a position to state the limitations on the orders of magnitude of 
the dimensionless parameters to which the boundary-layer equations are 
subject : 

3. Similarity solutions 
It has previously been shown (Rotem & Claassen 1970) that the existence of 

similarity solutions is limited t o  a temperature distribution such that O(z = 0) 
increases with the square of the distance from the axis of rotation and such that 
there is no magnetic field. This will now be generalized t o  the case in which there 
is a magnetic field of the type r 2 n ( z ) .  Introduce a Stokes streamfunction +, 

1 a y  1 aY 
r az ' r ar ' 

then the equation of continuity (13) is satisfied identically. Assume 

w=--- u=-- (19) 

(20) 

where b is the parameter Re G-%. Thereupon the system (14)-( 17) reduces to the 
following set of simultaneous quasi-linear ordinary differential equations : 

YP = r2F(r)  with 7 = x ,  
II = r2P(r), z1 = brr(q) ,  O = r2S(r), H = r2H(x), 

F" + 2F"F - F'2 = 2P - b T 2 - t  ( M / G f ) 2 F ' P ,  

I?"+ 2 ( F Y  - F ' r )  - (M/G*)2r172 = 0, 

S" + 2a(FS' - SF') = 0. 

(21) 

P' = + S ,  (22)  

(23) 

(24) 

The boundary conditions subject to which these equations have to be solved are 

(25) 

The intensity of the magnetic field may be specified as a function of the x co- 
ordinate. For a constant magnetic-field function, simpIy reduces to unity 
throughout. 

- 

1 F = F ' = O ,  S ' = r = H = l ,  at q = o ,  
F' = P = S = 0 ,  Hspecified, as q+m. 

4. Range of possible similarity solutions 
The following lemma will now be proved. 

LEMMA. For all possible similarity solutions the following holds: 

- 3SOm s,"I.' ( w ) I 2  dw + 2 s," jcm / y S ( c )  dCdwd5-t b 2 /  jrn [F(w)I2 dwd5 
7 6  

where y = M2G-t. 
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Proof. For a constant magnetic field intensity of unity we obtain the following 
equation by differentiating ( 2 1 )  with respect to 7. 

F'V + 2F"F = k 2s - 2b2rr '  + yF". ( 2 7 )  

Integration from 7 to co yields 

Repeated integration from 7 to 00 leads to 

P m  r m  

The lower limit of integration will now be extended to  7 = 0. Noting that 
F(0)  = F'(0)  = 0 and that F(7)  must be real, one obtains ( 2 6 ) )  which completes 
the proof. The identity sign applies to the trivial case of no flow. 

The proof given above is akin to a result for rather more general free-convective 
flows without either rotation or magnetic field discussed elsewhere (Rotem 1970). 
It is readily seen that whereas in the case of purely buoyant flows a similarity 
solution can exist only for a heated plate facing upwards (positive algebraical 
sign in front of the second term of ( 2 6 ) ) ,  in the present case a value of the para- 
meter b larger than J2 will enable solutions in the case of a heated downward- 
facing rotating plate (or the alternative one of a cooled plate facing upwards). 
An investigation of the existence of these solutions does not form a part of the 
present investigation. 

Three further conclusions may be drawn from inspection of (21), ( 2 2 ) ,  ( 2 3 )  and 
( 2 6 )  : first, the obvious invariance of the equations of motion under reversal of 
the directions of rotation or of magnetic field; second, that the normal magnetic 
field acts always in a braking manner upon the layer of fluid nearest to the 
boundary and by implication leads to a more rapid thickening of the boundary 
layer ; third, that a magnetic boundary layer will be present within which it is 
the magnetic and the inertia forces which balance, buoyancy playing a minor 
role. 
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5. Asymptotic cases of very large and very small a 
For the case of a very large value of the Prandtl number, the thermal boundary 

layer, i.e. that region of the flow over which the diffusive and advective terms in 
the energy equation are of the same order of magnitude, is rather thin in compari- 
son with the momentum boundary layer. Indeed, the transfer of heat is almost 
entirely accomplished in the region of large viscous forces. The application of the 
limit 5+00 to (17)  would seem to lead to the loss of the diffusive terms in the 
energy equation and thus to singularity. Obviously the requirement is for a 
transformation which will eliminate a as an independent parameter and which 
will retain these crucial terms in the energy equation. 

Conversely, for vanishingly small values of g the diffusive layer will extend 
beyond the momentum boundary layer; viscous forces will play only a small role 
over the extent of the thermal boundary layer. Mathematically it would seem that 
the value of the temperature at  the boundary is operative throughout the 
momentum layer, whereas the energy equation is uncoupled from the momentum 
equations. 

Prandtl number (T & 1 

We shall introduce asymptotically ‘stretched ’ variables which will yield the 
first term of an ‘inner’ solution (in a) and transform the thickness of this layer 
to order unity. This is accomplished by the introduction of 

Equations analogous to (21)-(25) may now be derived: 

(32) 

~ f f r - 2 P + b 2 - p ~ ~ ~ = 0 1 a - 1 1  =OIRa-Q], 
Ft t -yrH2= 01a-11 +OIRafl, 

P’kS  = O ) d /  +OIRa-*/, 
#‘r+2(i?$-P’x“) = OIRa-%I, 

where the constant p is M2Ra-%. Obviously, in the limit as a-tm there will 
be no influence of the magnetic field. On the other hand, for (T large but not 
infinitely large, the influence of the magnetic effects on the heat-transfer process 
will be of second order. 

The ‘inner’ region, to which (32) apply, has to be supplemented by an ‘outer’ 
region, throughout which inertia and viscous forces balance with the magnetic 
force, buoyancy playing no role to first-order. The requisite stretching has been 
discussed elsewhere (Rotem &, Claassen 19693). It is shown there that the boun- 
dary conditions (25) will apply to the zeroth-order inner solution, with super- 
scripted variables read for those of (25). 

Prandtl number Q 4 1 

Proceeding as above, we notice that the heat-transfer processwill here be governed 
by the ‘ outer’ (Prandtl number) layer. The requisite transformations are 

(33) 

F L M  52 4 
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leading to the following system of equations: 

2P“P - ( P 1 ) 2 -  2p + b2P2 -??.@ = O l c l +  OIG-bJ,  j (34) 
?P-PiI‘-prfif: = 01al + o I G - % ~ I ,  

P‘ S = O/G-Qg( -OlG-g[, 
firr+2(fi’F-P’8) = OlG-fdl.  

Here the coefficient 9 is iWG-b- f .  It is worth noting that the effect of the 
magnetic field is here greatly enhanced. As the highest order derivative in the 
momentum equations is now 2‘‘ instead of a third-order term as for a 01 1 I ,  it 
appears obvious that one of the boundary conditions previously used can no 
longer be fulfilled. Indeed, the condition of no-slip at  the boundary, i.e. P’(0) = 0, 
is no longer assured. It is the function of a suitable ‘inner’ solution to  ensure t,he 
disappearance of the velocity at  the solid boundary. The stretching required has 
been given previously (Rotem & Claassen 1969b), and it has also been shown that 
the boundary conditions (25)’ with the one exception mentioned above and with 
superscripted variables substituted, are adequate to solve for the ‘ outer ’ layer. 
This layer here determines the heat transfer entirely. 

0.6 0 8 0 7 
0-69312 
0.75702 
0.81381 
0.81767 
0.95700 
1-17045 
1,35820 

6. Numerical integration 
Equations (21)-(25) have been integrated for a variety of conditions: for 

buoyant flow with and without rotation, with and without magnetic field. Of 
particular interest is the approximate determination of the value of the constant 
b for which a breakdown of boundary-layer flow occurs;t this has also been ob- 
tained for one value of the Prandtl number. 

No ‘ rotation 

0- 

0.200 
0.300 
0.500 
0.720 
0.980 
1.000 
2.000 
5.000 

10~000 
20.000 

0.720 
0.720 
0.720 

1.000 
1.000 
1.000 

10~000 
10*000 
10*000 

P(a) F”( 0) 

1.73420 1.89230 
- 1.56174 

1.01923 1.28175 
0.83537 1.09657 
0-70951 0.96170 
0.70521 0.95343 
0.51191 0.71307 
0.35821 0.49025 
0.28160 0.37107 
0.22424 0.28136 

0.85071 1.35506 
1.08337 6.02628 
1.36209 13.96361 

0.72707 1,21751 
1.03114 5.94604 
1.34088 13.9 139 1 

0.45799 0-68786 
0.98961 5.74464 
1.32694 13.79858 

-P(O) 
1.50558 
1.28497 
1-11081 
0.99343 
0.90776 
0.90242 
0.74709 
0.59513 
0.50686 
0.43450 

0.95833 
0.67513 
0.52308 

0.85717 
0.55389 
0.42107 

0.38058 
0-18263 
0.13629 

TABLE 1. No magnetic field, heated surface upwards 

t This coincides with the vanishing of  F‘(0) for the case of the heated downward facing 
plate (or equivalently cooled upward-facing). 
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I 2 4 5 3 

7 

0 1 2 3 4 5 

7 

7 
FIGURE 1. Velocity, pressure and temperature functions, b = 0, 

y = 0, v = 0.20, 0.7, 0.98 for (a), ( b ) ,  ( c )  respectively. 

4-2 
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0 3 6 9 12 15 

?1 

7 
FIGURE 2. Computed values of functions for CT = 0.10, b = 1.0, y = 1.0, 

(a) P ,  P', r, (b )  P ,  P', r. 

As already mentioned, the system of simultaneous equations proves very 
difficult to integrate; close approximations to the final values of the missing 
initial conditions are required in order to obtain a stable iterative scheme. The 
range of integration in the independent variable 7 necessary in order to simulate 
conditions a t  infinity correctly depends on the Prandtl number. This is evident 
from the stretching transformations (31) and (33). 

Both the method of integration described by Rotem & Claaswn ( 1 9 6 9 4  and 
an extensively modified scheme based upon the work of Swigert & Nachtsheirn 
(1965) were used in conjunction with a fourth-order predictor corrector method. 
Some results are given in figures 1 and 2. Data which have to be known accurately 
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U b b-iF(co) b-’Hlr”(O) - b-*F’(O) - b*P(O) - b-*P”(O) 

10.0 4.9 - 0.50626 0.61491 0.40985 1.61709 
10.0 4.0 - 0.50373 0.61430 0-41037 1.61499 
10.0 3.0 - 0.49702 0,61270 0.41159 1.60940 
10.0 2.0 - 0.47349 0.60699 0.41614 1.58949 
10.0 1.5 - 0.43241 0.59674 0.42460 1.55355 
10.0 1.0 - 0.25679 0.54813 0.47022 1.37898 
10.0 0.8839 0.38555 0,03656 0.46834 0.57272 1.07544 

TABLE 2. No magnetic field; ‘unstable’ configuration, heated surface downwards. P”(0) 
vanishes at about b = 0.8834; thus there is no valid boundary-layer flow for lower values 

0- 

0.10 
0.72 
1 -00 

10.00 

0.10 
0.72 
1.00 

10.00 

0.10 
0.72 
1.00 

10.00 

0.10 
0.72 
1.00 

10.00 

0.10 
0.72 
1.00 

10.00 

0.10 
0.72 
1.00 

10.00 

b (MG-t)2 
1 0.010 
1 0.010 
1 0.010 
1 0.010 

5 0.010 
5 0.010 
5 0.010 
5 0.010 

1 0.500 
1 0.500 
1 0.500 
1 0.500 

5 0.500 
5 0.500 
5 0.500 
5 0.500 

1 1.000 
1 1.000 
1 1.000 
1 1.000 

5 1.000 
5 1.000 
5 1.000 
5 1.000 

17 
1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 

P(a) 
2.63078 
0.84900 
0.72515 
0.45391 

2.70185 
1.08145 
1.02899 
0.98719 

2.52925 
0.77713 
0-64799 
0.2765ti 

2.60191 
0.99341 
0.93004 
0.87234 

2.43369 
0.72185 
0.59380 
0.19242 

2.50459 
0-91516 
0.84214 
0.76553 

F’(0) 

2.72822 
1.35358 
1.21611 
0.68560 

6.98922 
6.02005 
5.93963 
5.7 37 7 7 

2.60484 
1.29162 
1.15812 
0.60398 

6.71914 
5-72924 
5.64030 
5.41467 

2.50059 
1.24374 
1.11461 
0.56061 

6.46665 
5.46124 
5.36442 
5-11193 

- r‘(o) 
1.28538 
0.9271 1 
0.87491 
0.66017 

1.59727 
1.42120 
1.40674 
1.38120 

1.40657 
1.11207 
1.07227 
0.89397 

1.68815 
1.52531 
1.51051 
1.48258 

1.52930 
1.28554 
1.25450 
1.11366 

1.78184 
1.63205 
1.61726 
1.58709 

- P(0) 
1-92432 
0.95958 
0.85842 
0.38154 

1.83188 
0.67599 
0.55459 
0.18276 

2.00034 
1.01792 
0.91553 
0.42727 

1.90295 
0.71987 
0.59063 
0-18930 

2.07671 
1.07186 
0.96677 
0.46637 

1.97564 
0.76723 
0-63069 
0-19639 

TABLE 3. Flow with rotation and magnetic field heated face upwards 

- P ( 0 )  
= -s’(O) 

0-45077 
0-79387 
0.86981 
1.75259 

0.50989 
1-20603 
1.40344 
3.62813 

0.43572 
0.76170 
0.83246 
1-60926 

0.49298 
1.15599 
1.34574 
3.52249 

0.42180 
0.73479 
0.80228 
1.51466 

0.47677 
1.10731 
1.28893 
3.41699 

are given in tables 1 , 2  and 3. The intensity of the heat transfer, characterized by 
the Nusselt number Nu, is directly obtainable from the numerical results given 
in the tables. NU = -(l?O/aq),=,G* = -r2S’(0)G+. (35) 

7. Conclusions 
In  the course of the present analysis it has been found possible to delimit a 

range of applicability of the boundary-layer approximations within which the 
flow in combined free- and forced-convection in the presence of a magnetic field 
could be obtained. It was found that the boundary-layer range was severely 
limited by the inequalities (18) (for Prandtl numbers of order unity). For large 
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Prandtl numbers the magnetic field had little influence on the transport process, 
while its effect was greatly enhanced for fluids of small values of u. Thus, while 
magnetic effects on the flow of aqueous solutions of electrolytes may be safely 
discounted, they may be crucial in the flow of liquid metals. In  the latter case the 
range of' free-convective boundary-layer flow will extend to values of G con- 
siderably lower than for other fluids. 

The flow obtained was found to depend upon the parameters GB, MG-i, cr, 
Re G-Q and b.? The possible solutions thus trace out a hypersurface in a multi- 
dimensional parameter space, being, however, limited to particular domains 
through both the inequalities (18) (their analogues for small and large values of CT 
respectively) and the integral theorem (26). Obviously, solutions of the full 
equations of motion, if they could be obtained, would not be subject to such a 
limitation. It is interesting to note that the flows obtained are invariant under 
reversal of both the sense of rotation and the direction of the magnetic field, but 
not a reversal of the vector gravity. 

It seems possible that theorems of this kind should be obtainable for a variety 
of other magneto-convective flows. This appears to be a subject worthy of 
further investigation. 

All solutions given in the present work are partial in the sense that zeroth- 
order approximations to either the inner or the outer regions alone were investi- 
gated in detail. It was shown that expansion solutions of the boundary-layer type 
will show multiple singularities, each of which has (in principle) to be solved by 
its own inner and outer expansion scheme. The main featuresof the heat-transport 
process are however given here; further refinements will add to  our understanding 
of the flow process without substantially modifying the results given. 

The type of flow investigated is entirely within the range of practical experi- 
ment. A sample calculation for liquid sodium yields the following numerical 
results. The density at  470 OK is approximately 0.90 g the expansion co- 
efficient at  constant pressure 2.5 x 'K-l, the kinematic viscosity 0.5 x 10-2 
Stokes, the electrical conductivity 0.73 x 10-lo see The value of the 
Prandtl number is 7 x so, for a maximum temperature difference of the 
surface from its surroundings of 6.3"K and for a disk of 20cm diameter, the 
Grashof number is 5 x lo8. The Hartmann number should therefore be at most 
about 55. With MG-k = i, this yields a typical induction of 7430 gauss. Also, the 
order of the rotational Reynolds number is 3030, whence a typical rotational 
speed of the disk is found to be about 8 revlmin. 

Thanks are due to the Canada Department of Transport, Meteorological 
Branch and t o  the Canada National Research Council for financial support of this 
research work. 

t To this has to be added the functional dependence of upon z ,  i.e. if, for example, 
H ( z )  = exp ( - n z )  then n will be an extra free parameter. 
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